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Abstract. An extended, but orbitally non-degenerate, Hubbard Hamiltonian which models 
the CuO, planes in the high-T, superconductors is considered. Effective Hamiltonians are 
derived for different parameter ranges leading to the identification of various phases and 
hole-pairing interaction terms which may be relevant to superconductivity mechanisms 
which are purely electronic in origin. The relationship with other models of electron cor- 
relations in the superconducting oxides is discussed and finally an extension of the model to 
include orbital degeneracy and crystal-field splitting is considered. 

1. Introduction 

Since the discovery of high-temperature superconductivity in doped La2Cu04 (Bednorz 
and Muller 1986) and YBa,Cu,O+ (Chu etal 1987) there has been renewed speculation 
about a mechanism for superconductivity which is primarily electronic in origin and can 
give rise to higher transition temperatures than is possible with the usual electron- 
phonon interaction. Anderson (1987) has conjectured that the antiferromagnetic 
exchange interaction between electrons on neighbouring Cu2+ sites will favour singlet 
pairing and that these pairs will behave like a quantum spin liquid in the CuO, planes of 
La,Cu04. The insulating (singlet) ground state may be pictured as mobile singlet pairs 
with double-site occupancy precluded due to the large on-site Coulomb repulsion and 
is thus a superposition of different pairings of electrons, which has been called the 
‘resonating valence bond’ (RVB) state (Anderson 1973), resembling the exact solution 
for the ground state of the linear antiferromagneticchain (Bethe 1931). Doping La,CuO, 
with Ba or Sr removes electrons from the Cu2+ sites allowing the singlet pairs to propagate 
as superconducting pairs. A spin-; Hubbard Hamiltonian underlies the RVB state and a 
number of papers have appeared which develop the theory (Anderson 1987, Baskaran 
etal 1987, Zou and Anderson 1988) or propose similar mechanisms based on the Hubbard 
Hamiltonian and antiferromagnetic pairing (Cyrot 1986, 1987a, b). Stabilisation of 
the pairing due to lattice deformations has been considered by Kivelson et a1 (1987) and 
Hirsch (1987a) and the effects of nearest-neighbour Coulomb repulsions by Ruckenstein 
et a1 (1987). 

A different mechanism has been proposed by Emery (1987), who argues that doping 
La2Cu04 will result in excess holes on the oxygen rather than the copper atoms and that 
these holes form superconducting pairs. Hirsch (1987b) uses Emery’s model and again 
argues that this will lead to propagating hole-pairs in a strong-coupling limit. There have 
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1622 J H Jefferson 

been a number of photoemission and XPS experiments (Sarma et a1 1987, Bianconi et a1 
1987a, b, Fuggle et a1 1988) which support the view that holes reside on the oxygen (or, 
equivalently, that there is an absence of Cu3+), though these results are somewhat 
controversial and we must await further experimental evidence. From the theoretical 
point of view, the resolution of this dichotomy is imperative. 

In this paper we shall consider the consequences of an extended Hubbard model in 
which it will be assumed (in common with all the theoretical papers mentioned above) 
that the Coulomb repulsion between electrons on the same Cu site is somewhat larger 
than the hopping interaction with nearest-neighbour 0 sites. This assumption enables 
us to reduce the space in which the initial Hamiltonian operates to obtain effective 
Hamiltonians for the ground manifold (including the low-lying excitations), which are, 
of course, the only states relevant to superconductivity. The motivation for this work 
has been the following. 

(i) To show that various d electron correlation models (referred to in the above- 
mentioned papers) emanate from the same basic (and rather simplified) model. 

(ii) To derive rigorous expressions, using degenerate or quasi-degenerate per- 
turbation theory, for effective Hamiltonians for a number of cases depending on the 
relative positions of the Cu (3d) and 0 (2p) energy levels. 

(iii) To use these effective Hamiltonians as a basis for further work-both numerical 
(simulations) and analytical (e.g. mean-field theory)-and to explore the relevance of 
the model to high-T, superconductivity. 

(iv) To provide a framework for extensions of the model to include refinements such 
as crystal-field effects, lattice distortions etc. 

It will be shown that there are, in addition to those previously considered, other 
interesting situations, such as the mixed valence regime, which may bear some relevance 
to the physics of superconductivity in these materials. We also identify various interaction 
terms, such as spin-dependent scattering, of the same order as the pairing terms, which 
may be important in inhibiting the tendency towards electronically driven 
superconductivity. 

In § 2 the basic model is defined and the perturbation method outlined. This is 
followed by a treatment of the case of one d hole per Cu site which reduces to an 
antiferromagnetic spin-Hamiltonian for the Cu sites only, through superexchange via 
the 0 atoms. Although this well known result has been obtained many times in various 
ways (see, e.g. Anderson 1959) we include it here to demonstrate the perturbation 
method used throughout the paper and to point out that there is an extra contribution 
to the exchange interaction, usually ignored, which may be important for the super- 
conducting oxides. We go on to show how this perturbation method may be used more 
generally to eliminate the 0 sites, provided the 2p energy levels are sufficiently low, 
yielding an effective Hamiltonain for the Cu holes only. It is pointed out that this gives 
the same result as would be obtained from the usual single-band Hubbard model only 
in a certain limit and it is by no means clear at the present time that this limit is appropriate. 
The various terms in the effective Hamiltonian are discussed, including hole-hole pairing 
in both the upper and lower Hubbard bands. It should be emphasised that when we 
speak of holes as residing either on the Cu sites or the 0 sites we are really referring to 
quasi-particles which, in the present framework, only have meaning in the sense of 
perturbation theory. The hopping-matrix element, t ,  is quite large (31 eV) and there 
will be significant hybridisation of the ‘bare’ 3d and 2p orbitals as evidenced by band 
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theory, i.e. mean-field theory (Mattheiss 1987, Mattheiss and Hamann 1987, Yu et a1 
1987). 

However, with large intra-atomic Coulomb repulsions we can, in some circum- 
stances, eliminate either the 0 or the Cu sites by the perturbation method (or a canonical 
transformation), yielding an effective Hamiltonian for quasi-holes located either on the 
Cu or the 0 sites (at least for a subset of the eigenstates of the original Hamiltonian, 
usually chosen to be the ground manifold). However, as will be demonstrated, this is 
not always possible and we are then in a truly mixed valence situation with the quasi- 
holes having significant amplitudes as a result of their being on either Cu or 0 sites. This 
mixed valence regime is discussed in § 6. In § 5 we consider the situation when the quasi- 
holes reside on the 0 sites, as conjectured by Emery (1987) and Hirsch (1987b), and in 
5 6 we discuss the limitations of the basic model and indicate how it may be extended to 
more realistic situations which will ultimately be necessary for reliable quantitative 
calculations. 

2. The basic Hamiltonian and the perturbation method 

It is now widely accepted that superconductivity in the oxide metals La,-xBxCu04 (B = 
Ca, Sror Ba), YBa2Cu309-d and related compounds is largely confined to Cu02planes 
in the perovskite structure, which are widely separated along the c axis compared with 
the Cu-0 bond lengths in the layers. Pure La2Cu04 is a semiconductor in which the Cu 
exists as Cu2+, having donated its outer 4s and one of its 3d electrons to a neighbouring 
0 site, thereby completing its 2p shell. The remaining electrons needed to fill all the 2p 
shells in the CuOz planes (and the 0 atoms in the La-0 planes) are provided by the 
lanthanum which exists as La3+. It is only energy levels derived from the C u 0 2  planes 
(with possible contributions from the 2p orbitds of the 0 atoms in neighbouring La-0 
planes) that lie near the Fermi energy and are thus important for conduction. That 
La,Cu04 is not a conductor is believed to be due to the large intra-ionic repulsion of the 
d electrons on the Cu sites which ensures that each Cu ion has just one d hole. Doping 
with Ca, Ba or Sr, which are acceptors, injects holes into the C u 0 2  layers. These holes 
can propagate and the material becomes a metal (albeit a poor one) at high temperatures 
and a superconductor at low temperatures. In stoichiometric YBa2Cu309-6 the chem- 
istry is such that extra holes already exist in the C u 0 2  layers without further doping. A 
simple Hamiltonian which models the physics of this situation is the extended Hubbard 
Hamiltonian 

H = H , + V  (1) 

~0 = X (&dnl + ~ n , ?  n , l )  + ep E n ,  

where 

I 1 

and 

V = t (d:up,u + HC). 
(Sb 

Here &d is the energy of a 3d hole on a Cu site, &p the energy of a 2p hole on an 0 site, 
tis the hopping matrix element between nearest-neighbour sites and U the intra-atomic 
Coulomb repulsion in the d shell (i.e. the energy of two d holes is 2ed + U ) .  n, is the 
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number operator for d electrons at site i ,  i.e. n, = nLt + n,l where n,, = d$d,, and d:u 
is a creation operator for a hole with spin (7 at site i. Similarly for the 0 orbitals, n, = 

n, + n, 1 where n,, = p:,p,, and p;u creates a spin-a hole at site j .  These localised 
orbitals are chosen to be orthonormal and the p and d operators thus satisfy the usual 
Fermi anticommutation rules. The sum ( i j )  in the last term is over nearest-neighbour 
Cu-0 sites. 

This model Hamiltonian is, of course, already grossly simplified. The fivefold orbital 
degeneracy of the d states and threefold degeneracy of the p states has been omitted as 
have many of the electron-electron interactions, both on the same site and between 
sites. The former interactions give rise to atomic multiplet structure, whereas the latter 
are responsible for crystal fields and additional hybridisation (hopping) terms. These 
interactions may be regarded as accounted for to some extent (in a mean-field or 
Hartree-Fock sense) by the renormalisation of the energy parameters in (1) ( E ~ ,  E ~ ,  t 
and U). The neglect of orbital degeneracy will be discussed further in § 7. The simplified 
Hamiltonian (1) has the merit of being the simplest model Hamiltonian which contains 
both the dominant intra-ionic interaction ( U )  and electron transfer terms (V) .  

The ‘unperturbed’ Hamiltonian, H o ,  is diagonal in the localised basis, i.e. its eigen- 
vectors are completely determined by the occupation numbers of the Cu and 0 orbitals 
at the various sites and may be written In n ;  n; n; . . . )where each nA, = 0 or 1 for 
k ranging over all Cu and 0 sites. For all cases of interest there will be a set of lowest- 
lying states that are well separated in energy from the remaining states. This set of states 
will be referred to as the ground manifold of H o  and the subspace of the total Fock space 
in which they lie, the model subspace. The ground manifold will be different in different 
situations (depending on the parameters E ~ , .  E,,, U and t in equation (1)) and will be 
described in detail for each case in the following sections. 

If we imagine the hopping interaction ( V )  being gradually switched on, then the 
ground manifold of H o  will develop into exact eigenstates of H with accompanying 
energy shifts and lifting of degeneracy. It may be shown (see e.g., Lindgren and Morrison 
1986) that these true eigenstates of H may be obtained from an effective Hamiltonian, 
H e f f ,  operating in the model subspace: 

H,ff = PHQ (2) 

where Pis the projection operator for all base states in the model subspace, i.e. 

where P, = la)(al with { 1 a)} the set of all eigenstates of H ,  in the ground manifold. Q is 
the ‘wave operator’ which may be expressed as a power series in the perturbation V ,  i.e. 

Q = R, + Q 1 +  Q 2  + L-23 + .  . . (3) 

where 
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Q~ = 2 R,VR,VR,VP, - 2 R,VR, 
a a 

- 2 R a ( x  Ra,VP,, 
a e' 

and 

with E,  satisfying H,, a) = Eala). (1 - P )  is, of course, the projection operator for the 
high-energy (intermediate) states. 

This is just a generalisation of ordinary Rayleigh-Schrodinger perturbation theory 
to the quasi-degenerate problem. It is to be preferred over other types of perturbation 
expansion, such as the Brillouin-Wigner method, since the effective Hamiltonian (2), 
to any order, does not depend on the energy of a particular eigenstate of H ,  nor does it 
contain spurious terms which are proportional to arbitrary powers of the volume (Thou- 
less 1972). When H o  is an independent-electron Hamiltonian, the expansion (3) may be 
simplified by expressing the series in terms of Feynman diagrams and it may be shown 
that only unlinked diagrams, including the so-called backwards or folded diagrams, are 
to be retained (Sandars 1969, Lindgren 1974, Brandow 1976). However, the H,, of 
equation (1) is not an independent electron Hamiltonian because of the intra-atomic 
correlation term 

and the usual linked-diagram theorem cannot be invoked without some modification. 
We shall, therefore, deal with the Rayleigh-Schrodinger expansion directly. Fortunately 
this task is less formidable than it appears since many of the terms vanish. 

The expansion (2) and (3) is formally exact, when taken to all orders, and will yield 
exact eigenvalues and eigenvectors of H ,  i.e. if IQ.,) is an eigenvector of He,, satisfying 

Heff  Ian.) = EnIQn) 

~ I Y l )  = E n I W  

1 % )  = QIQd. 

then 

where 

Furthermore, He, will yield the complete low-lying excitation spectrum of H (which 
comprises the only states relevant to superconductivity). In practice the power series 
expansion for He,  may be truncated in low order since it is rapidly convergent. This 
implies that t < A E ,  where AE is the smallest energy difference between a state la) in 
the model subspace and an intermediate state which has a non-zero overlap with VI (U). 
For the cases of interest, the model subspace can always be defined so that this condition 
is fulfilled. 
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It is emphasised that obtaining explicit expressions for H e f f ,  which is the main purpose 
of this paper, does not solve the problem (as it does in the non-degenerate case) but 
merely re-expresses it in a form in which high-energy states have been eliminated in the 
sense of perturbation theory. However, apart from obtaining effective Hamiltonians 
which operate in a smaller space (with obvious advantages for numerical work), one 
hopes that the new forms of the effective Hamiltonians will give greater insight into low- 
energy solutions by providing alternative descriptions of the true ground manifold, as 
has been the case for magnetic problems (see, e.g., Stevens 1976). 

We conclude this section by pointing out that the basic Hamiltonian (1) may itself be 
regarded as an effective Hamiltonian since it is incapable of yielding very high energy 
states, such as those which would result from exciting core electrons. We can in principle, 
of course, account for very high energy states by the perturbation method just outlined. 
One effect of this would be to further renormalise the parameters t ,  U ,  &p and &d from 
what they would be if H included such very high energy states explicitly. It will be 
assumed that this has been done and in this sense our basic Hamiltonian already describes 
quasi-holes. 

3. One hole per Cu site-the antiferromagnetic spin Hamiltonian 

As a simple application of the perturbation method described in the previous section, 
we consider briefly the case where there is just one hole per Cu site. A similar treatment 
for electrons, leading to the usual antiferromagnetic spin-Hamiltonian but with an 
enhanced exchange constant, has been presented elsewhere (Jefferson 1988a). 

In stoichiometric La2Cu04 the C u 0 2  planes have an average of one hole per C u 0 2  
cell. Furthermore, it will be assumed that the 0 p orbitals are somewhat deeper than the 
Cu d orbitals, i.e. for hole energies, &p > &d with &p - &d S t .  Hence, from (I), the ground 
manifold of H ,  = H(t  = 0 )  for N cells will consist of 2N states each with energy N&d, 

corresponding to one hole per Cu site with either spin up or spin down. Since odd powers 
of the perturbation V(equation (1)) can never connect states in the degenerate manifold 
the effective Hamiltonian to fourth order is, from (2) and (3), 

H,ff = P(E0 + VROV + VROVROVROV - VR8VPVROV)P (4) 

where Ro = (1 - P)/ (Eo - H,) is the same for all (degenerate) states in the model 
subspace, enabling the summations over a to be performed. Equation (4) is in fact the 
degenerate Rayleigh-Schrodinger result first obtained by Bloch (1958). The second- 
order terms merely renormalise the energy of the ground manifold and 

P(Eo + VRoV)P = I?,P 

where 

with v the number of nearest-neighbour 0 sites (2 for a linear chain, 4 for Cu02) .  This 
constant term may be dropped since it is the same for all states in the ground manifold. 
There is some mutual cancellation between the fourth-order terms in (4) rather like that 
which takes place in the linked-diagram theorem (when H ,  is an independent-electron 
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X T*Cl 0 X + X T+Cl 0 X - X T * * l  o 3  X 

Figure 1. Cancellation of singlet processes in PVRoVRoVRoVP (LHS) and 
PVRaVPVPoVP (RHS). The numbers refer to ordering of the hops. X ,  copper, 0, oxygen. 

Hamiltonian). This cancellation is shown in figure 1 and occurs only for singlet processes 
which do not flip spins. The residual processes can be written in terms of spin operators 
in just the same way as for electrons (Jefferson 1988a) and 

H,ff = J1 C. (Si * Si,  - 4) + J2 (Si  * Sit + 4) ( 5 )  
(ii’) (ii’) 

where 
J~ = 2 t 4 p u  and J2 = 2t4/&3. 

The first term in ( 5 )  arises from intermediate states in which a hole has been trans- 
ferred from a Cu ion to a neighbouring 0 ion and was first considered by Anderson 
(1959). The interaction between neighbouring Cu spins is attractive when they are anti- 
parallel. On the other hand, the second term in ( 5 )  arises from intermediate states 
in which two holes are on the same 0 atom and is a repulsive interaction between 
neighbouring Cu spins when they are parallel. Since there is exactly one hole per Cu site 
the constant terms may be dropped and 

where J = J 1  + J 2 .  Thus the distinction between attractive singlet and repulsive triplet 
interactions is unimportant and the overall effect is an enhancement of the anti- 
ferromagnetic exchange constant. However, as we show later, the distinction is impor- 
tant when there is more than one hole per Cu site and there is charge transport. 

The second term in ( 5 ) ,  not usually considered explicitly, is negligible when E % U. 
At the present time it is not clear that this is the situation in the superconducting oxides. 
Indeed, if the 0 2p levels are sufficiently high in energy for doping to create holes on the 
0 rather than the Cu sites, as has been speculated, then intermediate states with holes 
on 0 sites give the largest contribution to the exchange interaction. 

4. Elimination of the oxygen 

In this section we consider what happens in the metallic case when extra holes are 
introduced into the insulating C u 0 2  planes described in the previous section. It is 
shown that provided the 0 p levels are sufficiently deep, the holes will be confined 
largely to Cu sites and the 0 sites may be completely eliminated from the problem by 
the basic perturbation method described in 9 2 .  Although the resulting effective 
Hamiltonian only involves Cu sites, it is shown that it cannot be obtained from a 
single-band Hubbard model (i.e. a Hubbard model for Cu sites only), except in a 
certain limit which is unlikely to be a reasonable approximation in practice. 

Doping La2Cu04 with Sr or Ba, which are acceptors, has the effect of introducing 
holes into the CuOz planes, the mean hole occupation per cell becomes greater than 
unity and the material becomes a conductor. In the Y B a 2 C ~ 3 0 9 - 6  compounds the 
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I Cu3'1 
I 
(CU*'I 

Figure 2. Energy diagram of a typical base state in the ground manifold of a linear chain 
for which the 0 hole orbitals are unoccupied. 

mean hole occupation of the C u 0 2  planes exceeds unity without further doping. If 
&d + U < E,, then, according to ( l ) ,  the ground manifold of Ho will consist of states in 
which the 0 sites are unoccupied and the Cu sites are either singly or doubly occupied 
with holes. If x is the degree of doping in La2-,B,Cu04 (B = Ca, Sr or Ba) then 
N( l  - x )  sites will be singly occupied and Nx doubly occupied. There are thus 
P"l-4 TN, states in the ground manifold each with energy N[&d + x(&d + U>] (states 
with holes on the 0 sites are, of course, higher in energy). These base states may be 
represented by energy diagrams in which each Cu site has two energy levels at &d 

(occupied by the 'first' hole) and + U (occupied by the 'second' hole). Such 
diagrams, first used by Anderson (1961) for the magnetic impurity problem, correctly 
reproduce the two-hole energy, 2&d + U ,  including intra-ionic coulomb repulsion. A 
typical energy diagram for a linear chain is shown in figure 2 for a state in the ground 
manifold. Note that 0 hole levels are all unoccupied (since E > U )  with the Cu levels 
either singly or doubly occupied. 

If the hopping interaction (V)  is switched on, the degenerate manifold of states 
will develop into eigenstates of H which, according to the results of 3 2, may be 
described by an effective Hamiltonian. Since the ground manifold of H o  is exactly 
degenerate, the effective Hamiltonian to fourth-order is given by (4) with Eo = N[&d + 
x(&d + U ) ] .  After some manipulation, the effective Hamiltonian may be written in the 
form (dropping a constant, renormalised energy term): 

where 

to = t*/(& - U> + o(t4) 

A1 = [t4/&(& - U)][l/& + 1/(& - U>] 

J1 = 2 t 4 / ~ 2  U J2 = 2t4/e3 

A2 = 2t4/(& - U ) ;  

t l  = [ t 4 / & ( &  - U)](I/U + t 2  = PI&(& - U)U 

t; = t4/&2(& - U) t 4  = t 4 / ( &  - U ) 3  = A2/2. 

The &factors ensure that neighbouring Cu sites have a specific hole occupation. 
For example, aIl2 is unity when sites i and k are singly occupied and site i' doubly 
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occupied, and is zero otherwise. It can be written formally in terms of number 
operators, i.e. 

6112 b n , : l a n k : l a n , , : 2  

where 

= n ( 2  - n )  e n  - 2 n t n l  
and 

an:2  = tn(n - 1) = n n 

Similar equivalences follow straightforwardly for the other &operators in (7). It should 
be noted that Heff is indeed an operator which lies in the low-energy subspace in which 
the 0 sites are unoccupied (and therefore disappear from the problem) and the Cu 
sites are never unoccupied. The ratio of two-hole to one-hole sites (the degree 
of doping, x ,  in La2-.B,Cu04) remains fixed, the hopping terms merely causing 
rearrangement. It is to be noted also that He,, is Hermitian despite the fact that this 
is not generally the case with degenerate Rayleigh-Schrodinger perturbation theory 
(see, e.g., Lindgren 1974). Its Hermiticity is readily proved, term by term, by writing 
the &operators in a more symmetric form. For example, 

which is obviously Hermitian. 
Let us consider the various terms in (7) and, briefly, the processes in the per- 

turbation expansion which gave rise to them. The first term (the only second-order 
term apart from energy renormalisations which have been dropped) represents hopping 
from a doubly occupied Cu site to a neighbouring singly occupied site with effective 
hopping, ? / ( E  - U ) .  In fourth order, there are a number of important differences 
when compared with an equivalent second-order perturbation treatment applied to 
the simpler Cu-only Hubbard model (see below). In particular, extra terms appear 
which cannot be obtained unless intermediate states with holes on the 0 site are 
treated explicitly. These are the terms with coefficients J 2 ,  A I ,  A2,  t3 and t4 in (7). The 
antiferromagnetic exchange terms, J1 and J 2 ,  were considered in § 3. For that insulating 
case the J 2  term merely enhanced the exchange and the constant factors k4 were 
dropped. This cannot be done when the holes are able to move because of the 
occupation factors, all. Neighbouring holes which are antiferromagnetically aligned 
are bound with energy J1 + J 2 / 2  whereas ferromagnetically aligned pairs have a 
repulsive energy J2/2.  This result still applies when doping produces holes on the 0 
site (§ 5 )  or in the mixed valence phase (§ 6 )  since it only involves singly occupied 
sites. 

Some care is needed in deriving the fourth-order terms since there is much 
cancellation, analogous to that which takes place in the linked-cluster theorem for 
independent fermions. An example of such a cancellation for singlet-exchange pro- 
cesses was shown in figure 1. Tables 1 and 2 show the surviving fourth-order processes 
after all such cancellations have been accounted for. As a general rule, all processes 
in PVRiVPVRo VP are cancelled by processes in PVRoVRoVRoVP, except when they 
are prevented from doing so by the exclusion principle. 

and A2822 represent repulsions between holes and hole 
pairs on adjacent sites. The latter interaction may be regarded as a repulsion between 

The diagonal terms A 
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Table 1. Allowed diagonal and spin-flip processes (fourth-order) which are not cancelled. 

Term in Heif 
(equation (10)) Process Comments 

TI 5 e IT 
x '  o 3  X 

EPVRaVPVR VPII 

t Spin flip and non-spin flip. 
$ Spin flip only. 
9: Holes must have the same spin (triplet repulsion) 
/ /  Both holes transferred must have the same spin. 

'extra' holes. The remaining three-site hopping terms involve transferring a hole to a 
next-nearest-neighbour Cu site with and without spin flips. Note that the last term 
(see also table 2) may be regarded as the simultaneous movement of two hole pairs 
on adjacent sites, which favours the pairing of 'extra' holes, in contrast to the A, term. 
Such competition will be important if the 0 levels are not too deep, i.e. if E - U G 
U.  Retaining only the largest terms in ( 7 )  gives 

This is, formally, the infinite correlation limit ( E ,  U = with E - U finite) for which 
the Cu sites can never be unoccupied, even as intermediate states. The eigenstates of 
this Hamiltonian have been obtained exactly for the case of one 'extra' hole and 
numerically for the case of two extra holes (Jefferson 1988b). These solutions show 
that there is no binding between the extra holes and this result applies even when 
t > / E  - U /  for which the perturbation theory of this section breaks down (see § 6). 

Finally, consider the single-band Hubbard model for the Cu site only, which has 
been used as the basic Hamiltonian for CuO, layers by a number of authors. Applying 
the basic perturbation method to the Hubbard Hamiltonian 

H = fd 2 nio + nit  nil - d:,di,, 
ia i (ii')o 

(9) 
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Table 2. Allowed fourth-order, next-nearest-neighbour hopping processes which are not 
cancelled. 

Term in Heff Initial state Final state Comments 

2 1  4 3  

tld:onkod* O s l n  T l  1 T 
3 4 2  x o x o x  

x o x o x  

T I  T T 

T I  T 1 
x o x o x  

11 t ~ d ~ o d ~ - J ~ ~ d r ~ ~ ~ i z  T + +- I + '  

T"1" IT t&nk-od, 

2 1  

x o x o x  
4 3  2 1  

X Q X O X  x o x o x  

T1 TI T 
3 1  4 2  

x o  x o x  
1 +'+ TI +'+ TI 
x o x  o x  

E PVRoVRoVRoVPt 

E PVRoVRoVRoVP$ 

E PVRaVPVRoVPO 

E PVRoVRoVRoVqI 

I Non-spin flip. 
$ Spin flip. 
5 Non-spin flip. Sites i and k must have the same spin in the initial state. 
11 Hole pair-pair hopping. 

yields the following second-order effective Hamiltonian operating in the ground 
manifold (see also Hirsch 1985): 

t Z  + - (d~unkudi.u + d:ud:,-udkudi,,-u)6112 
U (iki')o 

Thus, comparing with (7), we see that a number of important terms are missing and 
the form (10) (and hence the Hubbard Hamiltonian which gave rise to it) are 
inadequate for describing the low-lying excitations. Note that for E + U ,  (10) and (7) 
are approximately equivalent, with I= ? / E  and 0 = U ,  reflecting the fact that in this 
limit the basic Hamiltonian (1) and the Hubbard Hamiltonian (9) are equivalent on 
energy scales GE.  This limit is, however, unlikely to be relevant to the cases of interest 
for which E and U are of comparable magnitudes. 

In summary, the main result of this section is that for situations in which the holes 
are confined mainly to the Cu sites with t < E - U ,  the oxygen may be eliminated from 
the problem and the Hamiltonians (1) and (7) have the same low-energy spectrum to 
fourth order. 

5. Hole transport on the oxygen 

As pointed out by Emery (1987), if the 0 2p orbitals are sufficiently high in energy 
then doping La2Cu04 will inject holes on to the 0 sites. This will occur if E <  U.  
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Furthermore, if U - E < t the Cu-charge degrees of freedom (hole transport) may be 
eliminated from the problem by perturbation theory, just as the oxygen was in the 
previous section. From (1) we see that the degenerate ground manifold of H ,  has 
energy Eo = N ( E ~  + xe,) with the nearest excited states being E or U - E higher in 
energy. The ground manifold consists of all states in which each Cu site has just one 
(immobile) hole with the remaining Nx holes distributed amongst the 0 sites. The 
degeneracy is very large (since the Cu sites and singly occupied 0 sites can have either 
spin), though we do not need to know it explicitly in order to derive the effective 
Hamiltonian which is, to second order, (cf (4)) 

H,ff = P(Eo + VR0v)P. (11) 

Substituting V from equation (1) and dropping a constant energy term, Heff may be 
written in the form 

where 

tl = t 2 / &  z2 = ?/(U - E )  z = t, + z2 

and v is the number of nearest-neighbour Cu sites, which is two for both CuO chains 
and C u 0 2  planes. It is emphasised that Heff operates in the ground manifold of H ,  for 
which all the Cu sites are always singly occupied. It thus describes the interaction 
between a system of fixed spins (the Cu sites) and a system of mobile holes (on the 0 
sites) which are scattered and induce spin flips. Examples of the processes in equation 
(12) are shown in figure 3. The energy renormalisations in (12) (first and third terms) 
are not very important since for low doping they give an approximately constant 

T *, \ 

I 
2 J 

T 4 
( d )  (e) 

Figure 3. Second-order processes: (a )  energy renormalisation; (b )  Cu-0 antiferromagnetic 
exchange; (c) energy renormalisation; (d )  0 hole hopping (depends on the spin of the 
intervening Cu site which may flip in the process); ( e )  further 0 hole hopping (hole 
transferred from Cu site first). 
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Figure 4. Hole propagation which preserves ferromagnetic alignment of nearest 
neighbours. 

contribution given that the number of doubly occupied 0 sites is very small?. It is to 
be noted that some of the remaining terms of the same order of magnitude survive in 
the infinite correlation limit ( E +  x, U - E finite). It has been suggested that the 
antiferromagnetic Cu-0 exchange (second term) should induce a ferromagnetic inter- 
action between neighbouring Cu spins (Aharony et a1 1988). It is not immediately 
apparent that these ferromagnetic correlations will survive under under the influence 
of the hopping interaction (last term) which can induce spin flips. However, the exact 
result presented in § 6 shows that, at least for a linear chain, an 0 hole will carry with 
it a predominantly ferromagnetic alignment of its nearest-neighbour Cu sites as it 
propagates. The mechanism of this process is shown in figure 4. The hole propagates 
from left to right by a series of hops in which it is always sandwiched between two Cu 
sites of opposite spin whenever it occupies an 0 site. Note also that the pattern of Cu 
spins to the right of the 0 hole (antiferromagnetically ordered in figure 4) shifts one 
place to the left as the hole propagates. 

As one might expect, these second-order processes dominate the hole transport 
giving rise to a low-lying band of width --?/(U - E )  (see § 6). However, certain fourth- 
order processes are still important, particularly when the number of 0 holes is small 
(low doping), since they largely determine the behaviour of the majority of the Cu 
spins, which have neighbouring 0 sites that are unoccupied. As in § § 3 and 4 they 
give rise to antiferromagnetic exchange terms in the effective Hamiltonian which may 
be written (cf (5) and ( 7 ) ) :  

He,  = 2 [Jl(Si * sit - a) + JZ(S,  * sit + $)]dlOl (13) 
( i j i ' )  

Double occupation will also be inhibited by the Coulomb repulsion between holes on the same 0 site, 
which was neglected in (1). (This is offset to some extent by direct 0-0 hopping, which favours double 
occupation. However, estimates of the relative magnitudes give to_O < Up and there is little doubt that the 
amplitudes for double occupation are small.) In addition, it is shown in § 6 that the holes repel, reducing 
further the probability of double occupation. 
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where J1 = 2+/e2U and J 2  = 2 t 4 / ~ 3 ,  as before, and aIo1 = ensures that 
the Cu sites are singly occupied with the intervening 0 site unoccupied. Thus we still 
expect antiferromagnetic pairing of Cu holes which are able to move in unison as the 
0 hole propagates (see figure 4). In this sense one can still envision an RVB state of 
pre-existing pairs as conjectured by Anderson (1987) for the case when the holes are 
confined to the Cu sites. 

3 4 
__)_ _t_ 

T 7 1 T 1  X 
X 0 
i i '  

Figure 5 .  Singlet process with intervening 0 site occupied. Note that Cu spin flips are not 
allowed. 

Hirsch (1987b) has pointed out that in two dimensions a hole will break anti- 
ferromagnetic bonds as it propagates and argues that this will favour the pairing of 
holes on 0 sites, since such a pair can propagate without leaving broken bonds behind. 
It should be noted, however, that this effective attraction will have to overcome 
effective repulsions between nearest-neighbour 0 holes, -t4/( U - E ) ~ ,  in addition to 
the (second-order) kinetic-energy gains in keeping the holes far apart. These effects 
would seem to mitigate against hole pairing and this is further supported by numerical 
solutions for the two-hole case (Jefferson 1988b and D 6) which show that, for a linear 
chain in the infinite correlation limit ( E ,  U-, x ,  U - E finite), the holes do indeed 
repel. It is not essential, of course, to have bound pairs of 0 holes in order to 
circumvent the problem of broken bonds since the Cu spins can rearrange themselves 
under the influence of spin flips contained in (13) when a single hole propagates. 

In addition to (13) there are numerous fourth-order processes which involve 0 
sites that are occupied. For example, the singlet process shown at the top of figure 3 
is still allowed when the intervening 0 site is singly occupied but spin flips must be 
excluded. This process, shown in figure 5 ,  can only take place in the direction i' -, i 
giving a contribution to the effective Hamiltonian is thus (cf (12)) :  

This, and the remaining fourth-order processes, are not expected to be very important 
since they will be swamped by the second-order processes in (12). Hence we will not 
consider them further here, though their derivation would be relatively straightforward 
(but tedious!) were this necessary. 

Neglecting double occupancy, the final effective Hamiltonian for hole transport on 
the oxygen becomes: 

where Hex is given by (13). 
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6. The mixed valence case 

When the hopping interaction, t ,  is comparable to (or greater than) the energy to 
transfer a hole between a doubly occupied Cu site and an 0 site, then the perturbation 
expansions of 9 9 4 and 5 break down and we cannot regard the (extra) holes as being 
confined to either Cu or 0 sites. This is a truly mixed valence situation and the low- 
lying eigenstates of H (equation (1)) will be coherent superpositions of basis states 
for which the amplitudes of hole occupation on the Cu and 0 sites are comparable. 
However, although t B I E - U /  (see figure 2 ) ,  the energy required to remove the hole 
from a singly occupied Cu ion (i.e. to create Cu' from Cu2+) will still be large, i.e. 
t 4 E ,  U. The ground manifold of H o  will not be exactly degenerate (except when E = 
U) but will consist of all states in which all Cu sites have one hole with the remaining 
Nx holes distributed among Cu and 0 sites. The energy of a state with N6 'extra' 
holes on the Cu sites and thus N(x  - 6) holes on the 0 sites is, from (l), Eo(&) = 
N[&d + a(&, + U )  + (x - 8 ) ~ ~ ]  with 0 =s 6 s x. There will, of course, be many states 
with energy E(6)  (6 fixed) due to spin degeneracy and the various ways in which the 
extra holes may be rearranged. The energy levels E(6) ,  for all 6, form a uniformally 
spaced set with separation I E  - U /  and the set of all corresponding states is what 
constitutes our ground manifold, or model subspace, for this intermediate valence 
situation. The total number of states in this set (dimension of the model subspace) is 
extremely large but all states must be included in order that the perturbation expansion 
for H e f f  be convergent (see below). (If, for example, we took only the degenerate 
states with the lowest energy the perturbation expansion would contain terms with 
coefficients - - P + ' / ~ E  - U/"  and hence be divergent since, by assumption t 3 I E  - Ui.) 
It is not necessary to know the size of the model subspace in order to obtain an 
effective Hamiltonian which may be derived using the more general 'quasi-degenerate' 
perturbation theory of 9 2 (cf ( 2 )  and (3)).  The effective Hamiltonian to fourth order 
is 

where He, is given by (13).  Again we have retained only the terms up to second-order 
which involve occupied 0 sites in the model subspace. In a sense, equation (15) is 
more general than the cases considered in the previous sections since it also applies 
to those cases where the holes are confined to either the Cu or 0 sites. In fact the 
perturbation method may be applied again to (15) for the cases t < I E  - U1 to recover 
the previous results ((7) and (12 ) ) .  

If we neglect the second- and fourth-order terms in (15) (the infinite correlation 
limit), then the problem of a single (extra) hole may be solved exactly and the two- 
hole case numerically in one dimension (Jefferson 1988b). These results show that 
there are three bands of single-hole energies: 

E o ( k )  = A (dispersionless) 
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and 

E , ( k )  = & A  k i[A2 + 16t2(1 + i ~ o s 2 n k / N ) ] ~ / ~  (16) 
where A = E - U .  Thus, in the mixed valence case with IAI < t the band width of the 
ground manifold is - t ,  whereas, for t 61A1, equation (16) may be expanded to give 
for the lowest band 

E - ( k )  E -(4t2/lAl)(l + Bc0~2nk/N) + i ( A  - ( A / )  

which are the same as tight-binding results for non-interacting fermions. For the case 
A + t (hole on Cu), it may be shown that (15) is approximately equivalent to a Hubbard 
model for Cu only in the large-U limit (Cu sites never unoccupied). This problem has 
been solved exactly (Klein and Seitz 1979) and is indeed equivalent to a non-interacting 
gas of spinless fermions. Thus E- (above) is a limiting case of this situation. 

The eigenstates with energy E , ( k )  are 

where A is a normalising constant. The state 1Ik) is a running wave with the extra hole 
on the Cu sites, i.e. 

11k) = ~ - 1 1 ~  exp(i2n/cn/~)/1n) 
n 

where iln) is a base state with the extra hole on Cu site n. Similarly, states IIIk) and 
IIIIk) are running waves with the extra hole on the oxygen: 

111kj = ~ - ' / 2  2 exp(i2nkj/~)12j) 
I 

where I2j) is a base state with the extra hole on oxygen sitej, having its spin antiparallel 
to neighbouring Cu spins (figure 4, top); 

IIIIk) = N-1/2 2 exp(i2nkj/N)[I3j) + 14j - l)]  
I 

where 13j) is the base state with the extra hole on site j having its spin parallel to the 
Cu spin to its right and antiparallel to the Cu spin to its left, and vice versa for state 

We see from (16) and (17) that, in the mixed valence regime (IAI 6 t ) ,  the 
amplitudes for cases where there is the extra hole on the Cu and 0 sites are comparable, 
as expected. Conversely, when t 6  1A1 the hole will be either on the Cu sites (A 
positive) or on the 0 sites (A negative), i.e. 

I 4j). 

lY-)- IW 
and 

IY+)- constant (IIIk) + a(k)lIIIk)) 

where 

a(k)  = {2~'?[1 + exp(i2nk/~)])- ' .  

Hence, when the hole is confined to the 0 sites it is predominantly in the state 
lIIk) (with probability -0.97 for small k )  and the antiferromagnetic alignment with 
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neighbouring Cu spins is preserved as the hole propagates, as stated in the previous 
section. 

Finally let us point out that although (16) reduces to the tight-binding results for 
t 4 1 A 1 ,  implying the non-interacting fermion result referred to earlier, the extra holes 
surely do interact when corrections due to finite t / A  are accounted for. This is supported 
by the perturbation theory of Q 4 which gave terms in the effective Hamiltonian 
corresponding to hole-hole repulsion and hole-pair hopping and these terms survive 
in the infinite correlation limit (see (7) and (8)). These results imply that the extra 
holes probably repel though we cannot be sure from the form of the effective 
Hamiltonian alone and in any case the behaviour may be different in the mixed valence 
regime for which (8) is no longer valid. However, detailed numerical calculations of 
the two-hole states in the infinite-correlation limit confirm that the holes do indeed 
repel over the full range of interest (i.e. holes on 0, Cu or the mixed valence regime; 
see Jefferson 1988b). Although the foregoing exact and numerical results are only 
strictly valid in one dimension, they do give some insight into the more difficult two- 
dimensional problem. There is little doubt that the spin polarisation caused by the 
propagating 0 hole and its broad band width (-?/I& - U1 or -tin the mixed valence 
case) will occur in two dimensions. 

7. Summary and outlook 

In this paper we have analysed a simplified Hamiltonian which models electron 
correlations in copper-oxide chains and planes. It has been shown that the Hilbert 
space of the initial Hamiltonian can always be reduced to produce effective Ham- 
iltonians which adequately describe the low-lying excitations. The choice of base states 
on which the effective Hamiltonian operates (i.e. the model subspace) depends to 
some extent on the relative positions of the Cu and 0 energy levels ( E ~  and E ~ ) .  When 
E~ % E d  + U the holes are confined to Cu sites which are never unoccupied in the 
model subspace and this yields, to fourth order, the effective Hamiltonian given by 
(7), describing the true low-energy states of the system. It reduces to the usual 
antiferromagnetic spin Hamiltonian (equation (6)) when there is just one hole per Cu 
site (corresponding to pure La,CuO,). In the general case (i.e. with doping) there are 
a number of extra terms in the effective Hamiltonian when compared with a similar 
treatment for a Hubbard Hamiltonian for the Cu sites only (cf (7) and (10)). These 
include triplet repulsions between holes in the lower Hubbard band and further 
repulsions between holes in the upper Hubbard band (i.e. the holes due to doping). 
The former interactions show that the antiferromagnetic singlet-binding energy is less 
than the spin-flip energy (they are equal for the Hubbard model), whereas the latter 
interactions imply that pairing between ‘extra’ holes is unlikely. This is, in fact, shown 
to be the case for the infinite-correlation limit (equation (8)) for which numerical 
solutions show that two extra holes always repel. 

When the 0 levels are sufficiently shallow for doping to put holes on the 0 
(i.e. E < U) then the effective Hamiltonian (equation (14)) contains second-order 
antiferromagnetic Cu-0 spin interactions in addition to the fourth-order exchange 
interactions between Cu spins (which again give the usual antiferromagnetic spin 
Hamiltonian for the undoped case (6)). These second-order exchange terms imply a 
ferromagnetic alignment between adjacent Cu spins when an 0 spin intervenes. This 
is indeed shown to be the case for the infinite-correlation limit (Cu sites always 
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occupied) despite the second-order hopping terms (including spin flips) and the exact 
solution presented in § 6 shows that as the 0 hole propagates it drags with it the 
ferromagnetic alignment of its neighbouring Cu spins (see figure 6). 

Although the basic Hamiltonian (1) probably contains the main physics of copper- 
oxide chains and planes for the parameter ranges considered, i.e. t < E < CQ with U 9 t ,  
any detailed calculations for comparison with experiment will need to take into account 
further electron-electron interactions and orbital degeneracy. The most important 
interactions which have been omitted are the remaining Coulomb and hopping inter- 
actions on the 0 and nearest-neighbour Cu and 0. Thus we add to (1) the terms: 

where v d p  is the Coulomb repulsion between holes on adjacent Cu-0 sites, U,  is the 
Coulomb repulsion (Hubbard U )  between holes on the same 0 site, V ,  is the Coulomb 
repulsion between holes on nearest-neighbour 0 sites and tp is the direct hopping 
between 0 sites. It is straightforward to apply the basic perturbation method to 
H + H I ,  again using the kinetic-energy terms (the t-terms) as the perturbation. The 
main effect will be to renormalise the terms in the effective Hamiltonians by changing 
energy denominators. 

A rigorous treatment of degeneracy is more problematic though a number of recent 
papers have begun to address this question. An effective spin-4 treatment of the Cu 
sites is obviously incorrect when Cu3+(ds) states are important since, according to 
Hund's rule, the two Cu holes will align to give a spin triplet lowest. This point has 
been discussed by Aoki and Kamimura (1987) and Kamimura (1987) who have shown 
how the Cu only Hubbard Hamiltonian may be generalised to include intra-ionic 
exchange on the Cu and how this effects the super-exchange between Cu ions. It 
would be straightforward, though tedious, to extend this analysis to include the 0 
explicitly. The lifting of orbital degeneracy has been considered recently by Chak- 
raverty et af (1987), Zhang and Rice (1988), Mila et af (1988) and Ashkenazi and 
Kuper (1988). The lowest-lying orbitals on the Cu ions are the d , 2 ~ ~ 2  orbitals which 
hybridise with the px and py orbitals on the 0 to form a-bonds, with n-bonds formed 
from the remaining px, py and pz orbitals lying somewhat higher in energy. Although 
retention of only those orbitals which form the lowest-lying o-bonds will remove the 
orbital degeneracy, it is not clear that the higher-lying levels are unimportant and they 
should be included in the initial Hamiltonian before being eliminated, where possible, 
by the perturbation method described in this paper. 

Finally, we mention some recent work by Gagliano et af (1988), Balseiro (1988) 
and Hirsch (1988) who consider the basic Hamiltonian (equation (1) with one or more 
terms from H I ,  equation (18)) in the regime E < t ,  which has not yet been discussed 
in this paper. It may be regarded as a mixed valence regime in which there is strong 
hybridisation between Cu2+(d9) + 02-(p6) and Cu+(dlo) + O-(p5) and has been 
discussed earlier by Varma et al(1987) who referred to the process as a charge-transfer 
excitation, forming (largely unscreened) Frenkel excitons. Although E < t, we may 
still apply the basic perturbation method to obtain an antiferromagnetic exchange 
Hamiltonian between Cu spins provided v d p  is sufficiently large, giving an insulating 
ground manifold for the undoped case. (Higher-lying states involving Cu3+(d8) can 
also be eliminated, of course.) Upon doping the CuO, planes, there can be pairing 
between the 'extra' holes (contrary to the result of 8 6), again provided V is sufficiently 
large. This can be appreciated from a simple electrostatics argument which shows that d! 
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for the model Hamiltonian (1) including the v d p  term in (18), with t = 0, the hole- 
paired state is lower in energy provided that vd, > &. Such pairing correlations might 
be expected to persist when t is switched on and this was shown to be the case for 
finite planes by numerical solutions. Similar hole-pair states are possible when other 
interactions in (18) are switched on. Because of the large uncertainty in the magnitude 
of the energy parameters, further experimental and theoretical evidence is needed 
before we can decide whether or not this pairing mechanism is feasible for the oxide 
superconductors. 
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